Function estimation with Alifanov’s iterative regularization method in linear and nonlinear heat conduction problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

An Iterative Method for the Solution of Nonlinear Regularization Problems with Regularization Parameter Estimation

Ill posed problems constitute the mathematical model of a large variety of applications. Aim of this paper is to define an iterative algorithm finding the solution of a regularization problem. The method minimizes a function constituted by a least squares term and a generally nonlinear regularization term, weighted by a regularization parameter. The proposed method computes a sequence of iterat...

متن کامل

Control volume-radial basis function method for two-dimensional non-linear heat conduction and convection problems

An improvement to the traditional Finite Volume Method (FVM) for the solution of boundary value problems is presented. The new method applies the local Hermitian interpolation with Radial Basis Functions (RBF) as an interpolation scheme to the FVM discretization. This approach, called the Control Volume-Radial Basis Function (CV-RBF) method, uses an interpolation scheme based on the meshless Sy...

متن کامل

Convexly constrained linear inverse problems: iterative least-squares and regularization

| In this paper, we consider robust inversion of linear operators with convex constraints. We present an iteration that converges to the minimum norm least squares solution; a stopping rule is shown to regularize the constrained inversion. A constrained Laplace inversion is computed to illustrate the proposed algorithm.

متن کامل

Iterative Choices of Regularization Parameters in Linear Inverse Problems

We investigate possibilities of choosing reasonable regularization parameters for the output least squares formulation of linear inverse problems. Based on the Morozov and damped Morozov discrepancy principles, we propose two iterative methods, a quasi-Newton method and a two-parameter model function method, for finding some reasonable regularization parameters in an efficient manner. These dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2002

ISSN: 0307-904X

DOI: 10.1016/s0307-904x(02)00083-5